On a Five-Parameter Mittag-Leffler Function and the Corresponding Bivariate Fractional Operators
نویسندگان
چکیده
Several extensions of the classical Mittag-Leffler function, including multi-parameter and multivariate versions, have been used to define fractional integral derivative operators. In this paper, we consider a function one variable with five parameters, special case Fox–Wright function. It turns out that most natural way based on requires considering it as two variables. This gives rise model bivariate calculus, which is useful in understanding differential equations involving mixed partial derivatives.
منابع مشابه
On certain fractional calculus operators involving generalized Mittag-Leffler function
The object of this paper is to establish certain generalized fractional integration and differentiation involving generalized Mittag-Leffler function defined by Salim and Faraj [25]. The considered generalized fractional calculus operators contain the Appell's function $F_3$ [2, p.224] as kernel and are introduced by Saigo and Maeda [23]. The Marichev-Saigo-Maeda fractional calculus operators a...
متن کاملon certain fractional calculus operators involving generalized mittag-leffler function
the object of this paper is to establish certain generalized fractional integration and differentiation involving generalized mittag-leffler function defined by salim and faraj [25]. the considered generalized fractional calculus operators contain the appell's function $f_3$ [2, p.224] as kernel and are introduced by saigo and maeda [23]. the marichev-saigo-maeda fractional calculus operat...
متن کاملFractional integral operators and the multiindex Mittag-Leffler functions
The aim of this paper is to study some properties of multiindex Mittag-Leffler type function E(1/ρj),(μj)(z) introduced by Kiryakova [V. Kiryakova, J. Comput. Appl. Math. 118 (2000), 241-259]. Here we establish certain theorems which provide the image of this function under the Saigo’s fractional integral operators. The results derived are of general character and give rise to a number of known...
متن کاملFractional differential equations for the generalized Mittag-Leffler function
*Correspondence: [email protected] 3Department of Mathematical Sciences, UAE University, Al Ain, United Arab Emirates Full list of author information is available at the end of the article Abstract In this paper, we establish some (presumably new) differential equation formulas for the extended Mittag-Leffler-type function by using the Saigo-Maeda fractional differential operators involvin...
متن کاملFractional Calculus of the Generalized Mittag-Leffler Type Function
We introduce and study a new function called R-function, which is an extension of the generalized Mittag-Leffler function. We derive the relations that exist between the R-function and Saigo fractional calculus operators. Some results derived by Samko et al. (1993), Kilbas (2005), Kilbas and Saigo (1995), and Sharma and Jain (2009) are special cases of the main results derived in this paper.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Fractal and fractional
سال: 2021
ISSN: ['2504-3110']
DOI: https://doi.org/10.3390/fractalfract5020045